Sdmay18-39 Sound Effect Devices for Musicians Advisors: Dr. Randal Geiger, Dr. Degang Chen By: Ben Reichert, Daniel Kroese, Garrett Mayer, Virginia Boy, and Tom Kimler

OPPORTUNITY STATEMENT

- Tube Amplifiers
 - Pros
 - Many prefer tonal qualities
 - Cons
 - High initial cost
 - Expensive
 - Frequent maintenance
 - Heavy (bulky electronics)
 - Electrically inefficient
 - Warm-up time

• Solid State Amplifiers

- Pros
 - Inexpensive
 - Durable, easy to maintain
 - Power efficient
- Cons
 - Doesn't produce tonal qualities that most prefer

How can we achieve a tube-like audio profile without a tube amplifier? Furthermore, how can we enhance it? – *The SuperTube Emulator*

PROPOSED STRATEGY – SUPERTUBE EMULATOR

• Emulator Benefits

- Impose desired audio profile onto instrument signal
- Allow user to control/personalize profile
- Avoid pitfalls of tube amplification

BIG PICTURE – DESIGNING THE SUPERTUBE

- We are a modeling SuperTube audio profile
- Approach:
 - 1. Research What strategies are used to emulate vacuum tubes
 - 2. Test/Analysis Gather data and develop model parameters
 - 3. Implementation Construct emulator/enhancer that uses model parameters

1. RESEARCH

- AES publications cite:
 - Total Harmonic Distortion (THD)
 - Dynamic Nonlinearities of Vacuum Tubes
- Previous work:
 - Effects Pedals (Ibanez Tube Screamer)
 - Software Modelling Unidirectional, Linear Filtering

→ These solutions are simply replications of the tube effect

[1]

Research provides our first potential parameters for defining our system

2. TESTING – DERIVING OUR OWN PARAMETERS

 Research lacks a closed-form algorithm for tube emulation... we need to observe these parameters in action

- Data Acquisition Test Bench:
 - High-Resolution Data capture
 - Multi-Channel Recording allows for:
 - Synchronized data analysis
 - Channel-to-channel comparison

2. CHARACTERIZATION OF TONAL QUALITIES

• Analysis Methods (MATLAB)

- Time Domain
- Frequency Domain
 - DFT
 - Spectrogram
- Objectives
 - Identify nonlinear distortions, frequency distortions, etc...
 - Quantify Observations in Spectral Decays

We have started to focus down on our model parameters

FUTURE – HOW DO WE IMPLEMENT THESE PARAMETERS?

- Develop Profile
 - Algorithmically implement parameters
 - Optimize scheming to achieve SuperTube Effect
- Implement Profile
 - Export profile to usable platform
 - Choose platform based on what yields best results
- Evaluate Success
 - Subjective evaluation via human trials (musician and non-musician)
 - Objective evaluation via analysis tools

PROJECT MILESTONES AND SCHEDULE

QUESTIONS?

REFERENCES

• [1][2]

P.C. SOFTWARE SUPERTUBE PROFILE

- Benefits:
 - Allows for ease of model tuning
 - P.C. provides excess of:
 - Computation Power, Memory
 - Instant Access to Analysis tools (e.g. Matlab)
 - High Throughput
 - →Effectively the fastest way to build a functioning Emulator
- Build in C
 - Low Level Language Portable to Hardware
 - FFTW Library

Computer

Once a functioning Emulator is achieve – we optimize for Hardware (reduce latency, etc.)

MICROCONTROLLER-IMPLEMENTED EMULATOR

- Provides more appealing final form factor:
 - Portable
 - Real-time (post algorithm optimization)
 - Easy to use
 - Tunable

